Isolation and Characterization of a Thermotolerant Ammonia-Oxidizing Bacterium Nitrosomonas sp. JPCCT2 from a Thermal Power Station

نویسندگان

  • Yoshikane Itoh
  • Keiko Sakagami
  • Yoshihito Uchino
  • Chanita Boonmak
  • Tetsuro Oriyama
  • Fuyumi Tojo
  • Mitsufumi Matsumoto
  • Masaaki Morikawa
چکیده

A thermotolerant ammonia-oxidizing bacterium strain JPCCT2 was isolated from activated sludge in a thermal power station. Cells of JPCCT2 are short non-motile rods or ellipsoidal. Molecular phylogenetic analysis of 16S rRNA gene sequences demonstrated that JPCCT2 belongs to the genus Nitrosomonas with the highest similarity to Nitrosomonas nitrosa Nm90 (100%), Nitrosomonas sp. Nm148 (99.7%), and Nitrosomonas communis Nm2 (97.7%). However, G+C content of JPCCT2 DNA was 49.1 mol% and clearly different from N. nitrosa Nm90, 47.9%. JPCCT2 was capable of growing at temperatures up to 48 °C, while N. nitrosa Nm90 and N. communis Nm2 could not grow at 42°C. Moreover, JPCCT2 grew similarly at concentrations of carbonate 0 and 5 gL(-1). This is the first report that Nitrosomonas bacterium is capable of growing at temperatures higher than 37°C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of two cryptic plasmids in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11.

Two plasmids were discovered in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11, which was isolated from activated sludge. The plasmids, designated pAYS and pAYL, were relatively small, being approximately 1.9 kb long. They were cryptic plasmids, having no detectable plasmid-linked antibiotic resistance or heavy metal resistance markers. The complete nucleotide sequences of pAYS ...

متن کامل

Nitrosomonas stercoris sp. nov., a Chemoautotrophic Ammonia-Oxidizing Bacterium Tolerant of High Ammonium Isolated from Composted Cattle Manure

Among ammonia-oxidizing bacteria, Nitrosomonas eutropha-like microbes are distributed in strongly eutrophic environments such as wastewater treatment plants and animal manure. In the present study, we isolated an ammonia-oxidizing bacterium tolerant of high ammonium levels, designated strain KYUHI-S(T), from composted cattle manure. Unlike the other known Nitrosomonas species, this isolate grew...

متن کامل

Genome sequence of Nitrosomonas sp. strain AL212, an ammonia-oxidizing bacterium sensitive to high levels of ammonia.

Nitrosomonas sp. strain AL212 is an obligate chemolithotrophic ammonia-oxidizing bacterium (AOB) that was originally isolated in 1997 by Yuichi Suwa and colleagues. This organism belongs to Nitrosomonas cluster 6A, which is characterized by sensitivity to high ammonia concentrations, higher substrate affinity (lower K(m)), and lower maximum growth rates than strains in Nitrosomonas cluster 7, w...

متن کامل

Effects of Bacterial Community Members on the Proteome of the Ammonia-Oxidizing Bacterium Nitrosomonas sp. Strain Is79.

UNLABELLED Microorganisms in the environment do not exist as the often-studied pure cultures but as members of complex microbial communities. Characterizing the interactions within microbial communities is essential to understand their function in both natural and engineered environments. In this study, we investigated how the presence of a nitrite-oxidizing bacterium (NOB) and heterotrophic ba...

متن کامل

Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2013